Phase space flows for non-Hamiltonian systems with constraints.

نویسنده

  • Alessandro Sergi
چکیده

In this paper, non-Hamiltonian systems with holonomic constraints are treated by a generalization of Dirac's formalism. Non-Hamiltonian phase space flows can be described by generalized antisymmetric brackets or by general Liouville operators which cannot be derived from brackets. Both situations are treated. In the first case, a Nosé-Dirac bracket is introduced as an example. In the second one, Dirac's recipe for projecting out constrained variables from time translation operators is generalized and then applied to non-Hamiltonian linear response. Dirac's formalism avoids spurious terms in the response function of constrained systems. However, corrections coming from phase space measure must be considered for general perturbations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational principle and phase space measure in non-canonical coordinates

Theoretical formalisms very often use non-canonical equations of motion. For example, the equations for Eulerian variables, that describe ideal continuous media, are in general non-canonical [1]. Non-canonical phase space flows can be derived from Hamiltonian dynamics by means of non-canonical transformations of phase space coordinates (i.e. transformations with Jacobian not equal to one) while...

متن کامل

Integrable geodesic flows of non-holonomic metrics

In the present article we show how to produce new examples of integrable dynamical systems of differential geometry origin. This is based on a construction of a canonical Hamiltonian structure for the geodesic flows of Carnot–Carathéodory metrics ([7, 17]) via the Pontryagin maximum principle. This Hamiltonian structure is achieved by introducing Lagrange multipliers bundles being the phase spa...

متن کامل

Embedding of a 2D Graphene System in Non-Commutative Space

The BFT approach is used to formulate the electronic states in graphene through a non-commutative space in the presence of a constant magnetic field B for the first time. In this regard, we introduce a second class of constrained system, which is not gauge symmetric but by applying BFT method and extending phase space, the second class constraints  converts  to the first class constraints so th...

متن کامل

Various Approaches to Conservative and Nonconservative Nonholonomic Systems

We propose a geometric setting for the Hamiltonian description of mechanical systems with a nonholonomic constraint, which may be used for constraints of general type (non-linear in the velocities, and such that the constraint forces may not obey Chetaev's rule). Such constraints may be realized by servomechanisms; therefore, the corresponding mechanical system may be nonconservative. In that s...

متن کامل

Holonomic Constraints: A Case for Statistical Mechanics of Non-Hamiltonian Systems

A dynamical system submitted to holonomic constraints is Hamiltonian only if considered in the reduced phase space of its generalized coordinates and momenta, which need to be defined ad hoc in each particular case. However, specially in molecular simulations, where the number of degrees of freedom is exceedingly high, the representation in generalized coordinates is completely unsuitable, alth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005